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White Paper: Kepler Microlens Planets and Parallaxes

Andrew Gould1 & Keith Horne2

Executive Summary
In its first 4 years, Kepler discovered thousands of hot planets, including many small ones, that

transit their host stars. With 2 reaction wheels, Kepler can no longer deliver the µmag photometry
required for transit surveys, but rather mmag photometry over its 115 deg2 field of view. By
pointing toward Baade’s window, Kepler can observe hundreds of Galactic Bulge microlensing
event lightcurves simultaneously, with near-continuous coverage and from a perspective displaced
from the Earth by 0.15-0.4 AU (projected). Kepler will then see microlens lightcurves offset in
time and in peak magnification relative to those from Earth, determining the distance and mass
of the lens stars and their planets. Kepler’s lightcurves also probe for planets along different
image trajectories on the lens plane, potentially more than doubling the number of detectable
microlens planets. Pointing constraints, as we understand them, limit Kepler’s coverage to two 14-
day windows in Spring and two more in Fall of each year. We show that microlens parallaxes can
still be uniquely measured for of order 300 events that peak near one of the two Spring windows.

1 Introduction

Although not at all designed for this purpose, Kepler could have operated as a superb microlensing
parallax satellite as it was originally constructed. It would have returned high-quality “microlens
parallaxes” for over half of all the 2000 microlensing events that are discovered each year toward
the Galactic Bulge, including about 3/4 of the events containing exo-planets. For these exo-planet
events, the microlens parallax nearly always permits measurement of the mass and distance of
the lens (and its planet). Such mass/distance measurements enormously increase the value of mi-
crolensing planets, since without them only the planet-star mass ratio is known, while the distance
is at best weakly constrained. Hence such measurements would enable much more precise charac-
terization of individual systems and would also allow determination of the Galactic distribution of
planets. Microlensing is primarily sensitive to planets somewhat beyond the snow line, where other
techniques either fail completely or are sensitive only to giant planets. Hence, these mass/distance
determinations would greatly enrich our understanding of a region of parameter space that is not
readily accessible to other techniques.

In its present condition, Kepler retains significant microlensing capabilities. The principal
challenge posed by the reaction wheel failures is that Kepler can point at the microlensing target
fields for only two 14-day periods during the microlensing season. This compares to 107 continuous
days (over half the season including the richest part) if it had 3 functioning reaction wheels. By
contrast, the problems with pointing stability and jitter have relatively little impact on Kepler’s
microlensing performance.

The key feature of Kepler for microlensing remains intact: capability to simultaneously observe
essentially all ongoing microlensing events. This enables good integrated signal-to-noise ratio (S/N)
despite large pixel size (and therefore relatively high background in crowded Bulge fields). Its unique
perspective also permits Kepler to independently discover planets in these events, since Kepler’s
lightcurves probe regions on the lens plane displaced from those probed by lightcurves from Earth.

A Kepler microlensing program could therefore both (1) return excellent science and (2) serve
as a pathfinder mission. It is true that the shortened observing windows substantially reduce the
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number of microlens parallaxes and planet masses. However, this would still be a major advance on
what is possible from the ground. But of equal importance, such a program would test a Kepler-
like microlensing mission in practice. A future dedicated mission built on this experience could
revolutionize microlensing in the upcoming era of massive microlensing planet searches, including
WFIRST.

We also note that there are opportunities for substantial synergy with Spitzer, which would be
aided considerably if first observations could begin 15 April 2014.

2 Microlens Planets: A Brief Primer

Microlensing searches are currently detecting about 12 planets per year, and this number is likely to
increase substantially in the near future with the ramp-up of new experiments. While these numbers
are still small compared to the thousands of planets (and strong planetary candidates) detected by
Kepler and other techniques, the microlensing planets lie in a unique region of parameter space,
i.e., a factor ∼ 2 beyond the snow line and down to Earth-like masses. Other techniques either do
not probe this region at all, or do so only for giant planets. Hence, the cool planets detected by
microlensing are complementary to the generally warmer planets found by Kepler and by radial
velocities. Moreover, microlensing planets lie at a range of distances from the solar neighborhood
to the Galactic Bulge, and therefore in principle permit measurement of the Galactic distribution
of planets.

Why are microlensing planets typically just beyond the snow line? With or without planets, a
lens star breaks up the source light into two magnified images. If one of these images passes close to a
planet of the lens star, the planet further perturbs the image, giving rise to a microlensing lightcurve
deviation. As the source gets closer to the projected position of the lens, the magnifications (and
so image sizes) get bigger and closer to the Einstein ring, where they are most easily perturbed.
Hence, microlensing is most sensitive to planets within a factor ∼ 1.5 of the Einstein ring, which is
at rE = DLθE, where

θE =
√

κM πrel

(

κ ≡
4G

c2 AU
∼ 8.1

mas

M⊙

)

(1)

is the angular Einstein radius, M is the lens mass, and πrel = AU
(

D−1
L − D−1

S

)

is the lens-

source relative parallax. For typical distances DL ∼ 4 kpc to the lens and DS ∼ 8 kpc to the
source, rE ∼ 3.5AU(M/M⊙)1/2. Since this is projected, the typical physical separation is a ∼

(3/2)3/2rE ∼ 4.3AU(M/M⊙)1/2. For comparison, the snow line is generally thought to scale as
rsnow ∼ 2.7AU(M/M⊙).

In the simplest case (Gould & Loeb 1992; Gaudi 2012), microlensing events require siz pa-
rameters: three for the underlying event (tE, t0, u0) and three more for the planetary perturbation
(s, q, α). The first three are just the Einstein timescale

tE =
θE

µgeo
= 37day

(

M

0.5M⊙

)1/2( πrel

40µas

)1/2( µgeo

4mas yr−1

)−1

, (2)

the time of peak t0, and the impact parameter (in units of θE) u0. Here, µgeo is the lens-source
relative proper motion (geocentric). The three planetary parameters are s (projected separation
in units of θE), q (planet-star mass ratio), and α (lens-source trajectory direction relative to the
planet-star separation). Hence, microlensing lightcurves typically determine only the mass ratio q,
not the planet mass m = q M . And since the host is generally not seen in the glare of the source
light, M is not generally known.

The situation is actually somewhat better than this because in nearly all planetary events, the
source passes over or near caustic features due to the planet (otherwise the planet would not be
detected). The structure of the lightcurve then depends on the ratio ρ = θ∗/θE of the source
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size θ∗ to θE. Since θ∗ is routinely measured from the color and magnitude of the source (Yoo
et al. 2004), planetary events almost always yield θE = θ∗/ρ. Hence, they also yield the product
M πrel = θ2

E/κ [Equation (1)]. However, to completely break the degeneracy (and so determine M
and πrel separately) requires one to measure the “microlens parallax”, πE.

3 Why Microlens Parallaxes Are Crucial

Microlens parallaxes nail down the masses and distances of the lens stars and their planets. Simpler
point-lens microlensing events are characterized by just three event parameters (tE, t0, u0). Of these
only tE is related to the physical parameters of the system (M,πrel, µgeo). See Equation (2). That
is, two additional parameters must be measured if one is to determine M and πrel. (Since the source
distance is generally known quite well, knowing πrel is equivalent to knowing the lens distance DL.)

But as just mentioned, planetary microlensing events routinely yield θE. Hence for these events,
the “microlens parallax” πE, which is the trigonometric parallax scaled to θE,

πE =
πrel

θE
;

πE

πE
=

µgeo

µgeo
(3)

is especially important. That is, if θE and πE are both measured, then one directly obtains

M =
θE

κπE
; πrel = θE πE. (4)

4 How Microlens Parallaxes Are Measured From Space

Since Kepler is separated from Earth by a distance d⊥ (projected on the plane of the sky) it sees
the microlensing events from a distinct perspective, peaking at a different time, and reaching a
different peak magnification. From Kepler’s perspective, the lens-source separation will be different
by an angle ∆θ = πrel d⊥/AU, displaced in the Einstein ring by

∆u =
∆θ

θE
=

πrel d⊥/AU

θE
= πE

d⊥

AU
. (5)

Kepler therefore sees the microlensing lightcurve with a different t0 and a different u0. Therefore,
it at least appears relatively simple to find πE by comparing the values of t0 and u0 as measured
on Earth and by Kepler :

πE =
AU

d⊥
(x̂∆τ, ŷ ∆β); ∆τ ≡

t0,Kep − t0,⊕

tE
; ∆β ≡ u0,Kep − u0,⊕, (6)

where x̂, ŷ are the directions parallel and perpendicular to d⊥. In fact, there is some subtlety. The
lightcurve magnification A depends only on the square of the lens-source normalized separation u:
A = A[u(t)], u(t)2 = u2

0 + (t − t0)
2/t2E, but u0 is itself a signed quantity (depending on whether

the lens passes the source on one side or the other). Hence, while the first component of πE

is unambiguous, the second can take on any of four values: +∆β−,−∆β−,+∆β+,−∆β+. See
Figure 1. The subscript refers to the source and lens being on the same (−) or opposite (+) side as
seen from the two observers, while the sign to the left signifies that the lens passes the source on its
right (+) or left (−) as seen from Earth. Fortunately we are interested primarily in the magnitude
of πE (hence of ∆β) so this four-fold degeneracy reduces to a 2-fold degeneracy, ∆β±.

Nevertheless, since the two remaining solutions can yield quite different values of πE, it is
important to distinguish them. This has been the subject of intensive study over the past 2 decades.
Space constraints preclude a thorough discussion in this white paper (WP). We therefore simply list
the main methods for doing this and give appropriate references. Satellite motion relative to Earth
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yields different timescales tE which permit breaking the ∆β degeneracy (Gould 1995; Boutreux
& Gould 1996; Gaudi & Gould 1997). The accelerated motion of Earth can yield the component
πE,‖ of πE that is parallel to this acceleration (Gould et al. 1994), which can be combined with
the measured ∆τ to extract the full πE (Gould 1999; Dong et al 2009b). For events with high
magnification as seen from Earth, the degenerate solutions are quite close, so the degeneracy has
no practical impact (Gould & Yee 2012). Further below we demonstrate by simulations that Kepler

is fully capable of breaking the ∆β± degeneracy in some representative cases. We show that it is also
sometimes capable of breaking the ±∆β degeneracy but that even when it is not, this degeneracy
does not significantly interfere with the mass measurement.

5 Kepler Microlensing Observations

Kepler can deliver near-continuous lightcurves for hundreds of microlens events observed in parallel
over its wide field of view, but the pointing restrictions, as we understand them, limit coverage to
two 2-week intervals in Spring and another two in Fall of each year. Kepler can observe fields near
the ecliptic (including the Galactic Bulge microlens fields) only with the boresight at Sun-angles
of ±45◦ and ±90◦, i.e., 4 times per orbit (P = 372 days). Because the field is approximately
∆φ = 13.5◦ across its principal axes, this actually means that any given point can be observed
for about P ∆φ/360◦ ∼ 14 days near each of these four times. For the Galactic Bulge fields, these
intervals in 2014–2015 are

1 − 14Mar 2014; 16 − 29Apr 2014; 28Oct − 9Nov 2014; 13 − 25Dec 2014;
9 − 21Mar 2015; 23Apr − 6May 2015; 4 − 17Nov 2015; 21Dec 2015 − 3 Jan 2016.

See Figure 2. It might be possible to extend these if the boresight does not have to be pointed
exactly at these Sun-angles. For example, if the angle could actually be in the 10◦ interval 90◦±5◦,
then Kepler’s observation windows could be expanded from 14 to 24 days. However, in this WP,
we consider only 14-day intervals.

Parallax measurements require simultaneous observations from Earth, and these are impossible
in Oct-Jan, so we focus on the Mar-May intervals. (However, “baseline” observations are actually
needed and these can be done during a subset of the Oct-Jan intervals.)

The first intervals within the (Summer 2014+) framework of this program are Mar and Apr-
May 2015. We focus on these. However, as we will comment in Section 7 below, an earlier interval
of observations in Apr 2014 would be especially useful for synergy with Spitzer.

In our basic observing protocol, targets would be uploaded to Kepler on 8 Mar 2015, and again
on 22 Apr 2015, i.e., just prior to the two intervals. These would then be observed continuously for
the 14 days in each interval. Targets from the first interval would also be observed in the second,
but of course new targets in the second interval would not be observed in the first.

We estimate that prior to 8 Mar 2015, the OGLE and MOA teams will have identified a total
of 130 microlensing events that will peak after 1 Mar 2015, and so would be suitable for these
observations. This estimate is based on 2013 data and takes into account that OGLE was still
fine-tuning its system and so identified many events in outlying fields late, but will be more prompt
in 2015. Similarly, we estimate 180 additional events identified by 22 Apr 2015 and peaking after
16 Apr 2015. Hence we can potentially monitor a total of 310 events or about 15% of all events.
The expected number of planets contained within these events is therefore about 2, or perhaps
somewhat higher due to the increasing rate of microlens planet discovery.

How many events can be observed simultaneously? We assume that we must download the full
1.4◦ arc (rather than moving arclets within the arc based on more aggressive software development).
We assume full download capability of (5.4×106 pixels)× (1440 epochs/long-cadence) and individual
download arcs of 6×1260×90% = 6800 pixels, where the last factor accounts for gaps. We assume
5 minute exposures to minimize trailing and assume 14 days of observations per long-cadence
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download. This allows 280 targets. Hence, plenty of excess capacity for the first 14 day of interval,
and adequate capacity for the second (after eliminating events that have returned to baseline or
are too faint to observe).

6 Crowding and Signal-to-Noise Ratio

Kepler photometry will be background-limited in the crowded Galactic Bulge fields. However,
with near-continuous coverage, it will have somewhat better precision than ground-based microlens
surveys, which will be sufficient to measure microlens parallaxes and independently probe for cool
planets by virtue of its displaced perspective.

The target characteristics and performance requirement of a Kepler microlensing program differ
quite radically from Kepler’s transit mission. Microlensing observations are directed toward the

most optically crowded wide-angle fields in the Galaxy. The targets are mostly very faint (I
>
∼

16) compared to typical transit-search targets (V
<
∼ 15). Thus, even within one Kepler pixel,

there are likely to be one or several other stars of comparable brightness to the target. On the
other hand, as we show below, photometric precision of 0.05 mag per observation would yield
highly precise microlens parallaxes (assuming that the photometric errors between measurements
are uncorrelated). Thus, Kepler’s capacity to make these measurements must be thought through
from the bottom up.

We first ask: what is the photometric precision assuming that the star field can be modeled
perfectly. We assume 3700 photons per second at I = 15 (using the Kepler response function and the
conservative example of a T = 5800K star with E(V −I) = 2). While conditions vary considerably,
we adopt a mean “background” (overwhelmingly stars) of I = 17.5mag arcsec−2. Most targets will
be relatively near the center of the Kepler field, where the PSF has a FWHM of θFWHM = 3.1′′.
In our proposed mode of 5 minute exposures, the images would be trailed by ǫ = 4.5′′. Hence, the
effective background area in the oversampled limit is (π/0.70 ln 4) θ2

FWHM = 30arcsec2 (Gould &
Yee 2013). Since a pixel is 2 times smaller than this number, the oversampled limit is too generous:
we adopt 40 arcsec2. Hence, the background light is approximately I = 13.5, i.e., we are background
limited in essentially all cases. This implies a photometric precision of σ = 0.05×10(I−18.4)/2.5 mag.

Can this precision be achieved in practice and will the errors be uncorrelated? There is good
reason to believe that the answer to both questions is “yes”. The distribution of background
light will be measured at much higher (∼ 1′′) resolution in V and I from intensive ground-based
microlensing observations. Transforming these to unfiltered bands is known to work to better
than 1% (Yee et al. 2012). The (typically 3–5) brighter sources in the PSF can be fit to very
high precision using the ensemble of ∼ 2 × 104 measurements together with their precise positions
and these initial 1% “guesses”. The estimates can be used directly for the fainter sources. Note
that 1% flux errors in these faint stars leads to errors in lensed-star photometry that are much
smaller than 1% of the faint sources, because it is only differences between images that directly
contributes to the error, not the differences between background-model and reality. The systematic
errors in these measurements are small compared to 5%, so they do not impact the individual
errors. However, if these systematic errors were the same in each measurement, they could not be
“beat down as square-root of N”. But these systematic errors come from intrapixel variations and
flatfielding errors. Since the target lands on thousands of different pixels, and at random positions
on each, such errors are effectively uncorrelated. Accounting for 10% loss due to the photometry
arcs crossing CCD gaps, we estimate 260 images per day. Hence 0.05 mag errors (at I = 18.4 which
is faint relative to typical targets) corresponds to errors of 0.003 mag per day.

We adopt these errors in for two examples shown in Figure 3. These correspond to typical
lenses in the Galactic Disk and Bulge, respectively. Note that in 3 of the panels, we consider that
the Kepler source flux is determined just from the overall fit. But in the last panel, we consider the
impact of using the flux-alignment method of Yee et al. (2012), mentioned above. These examples
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show that even with conservative estimates on the photometric precision, high-precision parallax
measurements are possible.

7 Potential Synergy with Spitzer

Spitzer is also in an Earth-trailing orbit and so can also, in principle be used for microlens parallax
measurements. Compared to Kepler, Spitzer has the advantages of 1) 38 day continuous observing
window (instead of two widely separated 14 day windows), 2) Windows are currently in June-July,
i.e., straddling the “peak” of the microlensing season (21 June ±45 days), 3) Smaller PSF (1′′ vs.
3′′) and pixel size (1.2′′ vs. 4′′), 4) Non-trailed images.

These seem formidable, but Kepler also has two major advantages: 1) Observes all lensing
events simultaneously (not sequentially), 2) Passband closer to SED peak of even heavily reddened
sources.

Hence, Kepler and Spitzer present complementary opportunities for microlensing science, with
different passbands and observing modes, and, most critically, complementary time coverage of the
Galactic Bulge microlensing target fields.

In particular, we note that the examples shown in Figure 3 are events that peak in early
March and then are reobserved by Kepler in April-May. The latter “second-epoch” observations
are important for pinning down the microlens parallax. Now, Kepler itself cannot provide second-
epoch observations for targets discovered and peaking in April-May. However, Spitzer could provide
such a second-epoch because its window begins roughly 34 days after the second Kepler window
ends.

This synergy can potentially be implemented in 2014. There is a Cycle-10 Spitzer proposal
to observe microlensing events continuously from 2 June to 12 July 2014. While it is unknown
at the time of this writing whether this proposal will be successful, this certainly will be known
well in advance of the decisions about Kepler. The value of these Spitzer microlensing observations
would be greatly augmented by adding targets that were observed by Kepler in the 16-29 Apr
2014 window and were in decline at the time of the Spitzer window. While this Kepler window
is 2-months before the anticipated “Summer 2014” start of the new mode of Kepler observations,
it does not seem impossible to open up this pre-summer 14-day window, in light of the potential
synergy with Spitzer.

8 Additional Science

There are three other major science goals, in addition to planet masses, that could achieved with
these observations.

First, because Kepler is probing a different part of the Einstein ring, it will (in most cases)
detect planetary perturbations that are not detected from Earth (and also fail to detect those that
are detected from Earth). Hence it will increase the number of detected planets. And like the
planets detected from Earth, these will have πE and θE measurements, and thus mass and distance
determinations. We estimate a roughly equal number of such planet detections, i.e., two per year.

Second, Kepler will measure the masses and distances of essentially all binary microlensing
events discovered from Earth. In these cases, the caustics are so big that Kepler will detect binary
perturbations from the same events as those detected from Earth. However, because it will probe
caustic crossings at a substantially different location in the Einstein ring, it will likely enable
complete orbital determinations for all such binaries. Note that this is quite rare for Earth-only
observations: Shin et al. (2012, 2013) did this for three cases, but all were exceptionally favorable,
being very close to the Sun, with consequent large πE.

While binaries in general are more easily studied in other ways, this is not true for brown-dwarf
(BD) binaries, which are difficult or impossible to detect with other methods, particularly close,
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low-mass BD binaries. While BD microlensing binaries are not usually distinguishable from main-
sequence binaries, Choi et al. (2012) found two cases in which the systems were so close to us that
their parallaxes (and so masses and BD status) could be determined. These proved to extend the
previously discovered “minimum binding energy” for BDs to a completely new regime in mass and
separation. Kepler would be able to pick out the BD binaries in all cases, not just the handful of
favorable cases that are currently possible.

Finally, while most single-lens events will not have measured θE, their parallax measurements
alone can yield important science. Han & Gould (1996) showed that the lens mass function could
be reconstructed from the ensemble of such measurements. While the mass function of luminous
stars is more easily studied photometrically, dark objects (like isolated black holes, neutron stars,
and old BDs) will show up only in microlensing surveys, which are sensitive to mass, not light.

9 Pathfinder Mission

We have organized this white paper around the goal of measuring microlens parallaxes for planetary
events because these would yield individual masses and distances for the planets and their hosts.
We have estimated that two such mass measurements could be made per year. Perhaps another two
could be made if Kepler succeeds in detecting its own planets. This may not seem like a lot, but
in fact in the whole history of microlensing planet searches, there have only been four precise mass
measurements for planetary systems. In each of these four cases, fundamental insights emerged
(Gaudi et al. 2008; Dong et al. 2009a; Muraki et al. 2011; Batista et al. 2013). But each of these
four cases was “extremely favorable” in some way, usually because the lens was close to us. So
the sample of mass measurements is highly biased in addition to being small. Kepler will measure
masses and distance of an unbiased subsample, and so will turn up new surprises.

Moreover, in the future, one would like to routinely make mass measurements of essentially all

microlensing planets. This would be possible if a wide-field camera (like Kepler) were placed in
solar orbit, so that it could simultaneously observe all microlensing events. We have seen that even
in its degraded state, Kepler will have no trouble measuring parallaxes for the modest fraction of
microlensing events that peak near its observing windows. This means that a much more modest
satellite could achieve good results during the entire microlensing season, provided that its science
requirements were specifically analyzed. The same, or perhaps another specially purposed satellite
could obtain microlens parallaxes for WFIRST microlensing.

Much would be learned about design issues for such future missions by a pilot microlensing
program with Kepler.
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Figure 1: Illustration of four-fold degeneracy derived from comparison of Kepler and ground based
lightcurves. Upper panel shows two possible trajectories of the source relative to the lens for each
of Kepler (red) and Earth (blue) observatories. Each set would give rise to the same point-lens
lightcurve in the lower panel (same colors), leading to an ambiguity in the Earth-Kepler separation
(distance between red circle and blue square) relative to the Einstein ring. In this particular case,
the planet causes deviations to both lightcurves (green), thus proving that the trajectories are on
the same side of the Einstein ring. More generally, the planet would appear in only one curve,
leaving the ambiguity open. In this case, it would be resolved by more subtle differences in the
Einstein timescale.
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Figure 2: Kepler-Earth projected separation in 2014 (magenta line) and 2015 (cyan line) for Galactic
Bulge observations. Red and Blue points show the times when the boresight can be pointed ±45◦

and ±90◦ from the Sun with the field center still contained within the field of view. Green vertical
lines show the approximate boundaries of the microlensing season from Earth.
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Figure 3: Parallax measurement and degeneracy-breaking for a typical Disk-lens event
(πE,N , πE,E) = (0.3, 0.3) (left) and Bulge-lens event (πE,N , πE,E) = (0.03, 0.03) (right). Top panels:
Kepler measurements (triangles) over two 14-day windows and Earth measurements (circles) over
much longer timescale both shown on arbitrary magnitude scale. Four different models are shown
for each, indicated at right in different colors. (In this panel the model curves overlap and can
barely be distinguished). The true model is +∆β−, i.e., lens passes the source on its right as seen
from Earth (+), and Earth/Spitzer both see the lens passing the source on the same side (-). The
error bars are 0.005 mag per day from the ground and 0.003 mag per day from Kepler. Lower
Panels: residuals for each case for Earth (black) and Kepler (colored). Disk (left): +∆β+ would
have πE ∼ 1.45 (factor 3.4 too large) but ruled out by ∆χ2 = 71; −∆β− would have πE ∼ 0.44
(just 5% too large) and is ruled out by (∆χ2 = 71). −∆β+ would have πE ∼ 1.13 (factor 2.7 too
large) and ruled out by ∆χ2 = 2084. Bulge (right): +∆β+ would have πE ∼ 1.6 (factor 38 too
large) but ruled out by ∆χ2 = 147; −∆β− would have πE ∼ 0.048. This is permitted (∆χ2 = 1)
but it is just 14% too large; −∆β+ would have πE ∼ 1.13 (factor 26 too large) and ruled out by
∆χ2 = 1729. Bottom-most panels: However, all three of these cases allowed for free fitting of Fs.
When this is constrained based on technique described in text, the result is shown in the bottom
panel for the −∆β+ case. We then find ∆χ2 = 3559(vs. 2084) (disk) and ∆χ2 = 3636(vs. 1729)
Measurement error is about 0.003 (0.005) in each direction, i.e., ∼ 1%(15%), but without Kepler

data, the Earth-based lightcurve would have completely unconstrained parallax (errors of 0.4 in
the North direction).


